192 Laminar Flow Analysis

Differentiating Eq. (5-53) with respect to £ and consistent with the previous de-
velopments of the two-equation locally nonsimilar boundary layer model, neglect-
ing the term 2£(f'S; — Se f”) yields the first auxiliary momentum equation, i.e.
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The energy equation and the first auxiliary energy equation are identical to
those for the two-equation locally nonsimilar forced convection boundary layer
model, i.e., Egs. (4-124) and (4-125). For completeness they are repeated here
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The appropriate boundary conditions, including the effects of mass transfer at
the surface, are given by Egs. (3-1060b, ¢), (3-127), (3-118), (3-132), (4-122a,b)
and (4-127a,b). In particular, at the surface the boundary conditions are
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