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2–1 Introduction

Because of the great complexity of the full compressible Navier-Stokes equations,
no known general analytical solution exists. Hence, it is necessary to simplify
the equations either by making assumptions about the fluid, about the flow
or about the geometry of the problem in order to obtain analytical solutions.
Typical assumptions are that the flow is laminar, steady, two-dimensional, the
fluid incompressible with constant properties and the flow is between parallel
plates. By so doing it is possible to obtain analytical, exact and approximate
solutions to the Navier-Stokes equations.

Before proceeding let us clearly define what is meant by analytical, exact and
approximate solutions. An analytical solution is obtained when the governing
boundary value problem is integrated using the methods of classical differential
equations. The result is an algebraic expression giving the dependent variable(s)
as a function(s) of the independent variable(s). An exact solution is obtained
by integrating the governing boundary value problem numerically. The result
is a tabulation of the dependent variable(s) as a function(s) of the independent
variables(s). An approximate solution results when methods such as series expan-
sion and the von Karman-Pohlhausen technique are used to solve the governing
boundary value problem (see Schlichting [Schl60], p. 239).

2–2 Analytical Solutions

Finding analytical solutions of the Navier-Stokes equations, even in the uncou-
pled case (see Section 1–10), presents almost insurmountable mathematical diffi-
culties due to the nonlinear character of the equations. However, it is possible to
find analytical solutions in certain particular cases, generally when the nonlin-
ear convective terms vanish naturally. Parallel flows, in which only one velocity
component is different from zero, of a two-dimensional, incompressible fluid have
this characteristic. Examples for which analytical solutions exist are parallel flow
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through a straight channel, Couette flow and Hagen-Poiseuille flow, i.e., flow in
a cylindrical pipe. Here we discuss parallel flow through a straight channel and
Couette flow.

2–3 Parallel Flow Through A Straight Channel

A flow is considered parallel if only one component of the velocity is different from
zero. In order to illustrate this concept, consider two-dimensional steady flow in a
channel with straight parallel sides (see Figure 2–1). This flow is two-dimensional
since the velocity is in the x direction and, as we shall see, its variation is in
the y direction. We consider the fluid to be incompressible and to have constant
properties. Under these circumstances the momentum and energy equations are
uncoupled (see Section 1–10). Thus, we consider only the continuity and the
momentum equations, i.e., the velocity field, and reserve our discussion of the
energy equation, i.e., the temperature field, until Chapter 4. The continuity
and momentum equations for two-dimensional, steady, incompressible, constant
property flow are

continuity
∂u

∂x
+

∂v

∂y
= 0 (1 − 49)

x momentum

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ
∂P

∂x
+ ν

(
∂ 2u

∂x2
+

∂ 2u

∂y2

)
(1 − 50a)

y momentum

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ
∂P

∂y
+ ν

(
∂ 2v

∂x2
+

∂ 2v

∂y2

)
(1 − 50b)

Since the flow is constrained by the flat parallel walls of the channel, no com-
ponent of the velocity in the y direction is possible, i.e., v = 0. This implies

u

u( )y

2h
y

xCL
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Figure 2–1. Parallel flow through a straight channel.
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that v = 0 everywhere. Hence, the gradients in v are also equal to zero, i.e.,
∂v/∂y = ∂v/∂x = ∂ 2v/∂y 2 = ∂ 2v/∂x2 = 0.

From the continuity equation we have

∂u

∂x
= − ∂v

∂y
= 0

which implies that ∂u2/∂x2 = 0. The momentum equations are thus reduced to

dP

dx
=µ

d2u

dy2
(2 − 1)

and ∂P

∂y
= 0

Since u is not a function of x, the distance along the axis, there is no physical
mechanism to provide a change in the pressure gradient. Thus, the pressure
gradient is considered constant, i.e., dP/dx = constant. Note that under these
conditions all of the nonlinear convective terms in the momentum equations
are eliminated. Equation (2–1) is a linear second-order ordinary differential
equation. It is easily integrated twice to yield

u(y) =
1
2

1
µ

dP

dx
y2 + Ay + B (2 − 2)

where A and B are integration constants.
In order to evaluate the integration constants, we apply the no-slip boundary

conditions at the channel walls. The boundary conditions at the walls are

y = ±h u = 0 (2 − 3)

Using these boundary conditions to evaluate the integration constants, we have

A = 0

B = − 1
2

h2

µ
dP

dx

Substitution into Eq. (2–2) yields

u(y) = − 1
2

h2

µ
dP

dx

[
1 −

(
y

h

)2 ]
(2 − 4)

Here we see that the velocity distribution in the channel is parabolic and sym-
metrical about the axis. The maximum velocity, which occurs at the center of
the channel, is given by

um = − 1
2

h2

µ
dP

dx
(2 − 5)
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Introducing nondimensional variables

ū =
u

um
ȳ =

y

h

yields ū = 1 − ȳ2 (2 − 6)

This nondimensional velocity distribution is shown in Figure 2–1. Using New-
ton’s law of friction, which is obtained with the help of Eqs. (1–15a) and (1–25),
the shearing stress at the channel walls is given by

τ(y=±h) = µ
du

dy

∣∣∣
(y=±h)

(2 − 7)

or using nondimensional variables

τ(ȳ=±1) = µ
um

h

dū

dȳ

∣∣∣
(ȳ=±1)

(2 − 8)

Thus, using Eqs. (2–5) and (2–6), the shearing stress at the channel walls is

τ(ȳ=±1) = ±h
dP

dx
(2 − 9)

2–4 Couette Flow

Continuing our discussion of the analytical solutions, consider the flow between
two parallel infinite flat surfaces, one of which is moving in its plane with a
velocity U (see Figure 2–2). The flow is considered steady, two-dimensional and
incompressible with constant properties. Using the same physical and geometric
arguments presented in the previous discussion of channel flow, the governing
equations again reduce to

dP

dx
= µ

d2u

dy2
(2 − 1)

h
y

x

U

Moving Surface

Figure 2–2. Couette flow.
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No-slip boundary conditions are assumed to apply at both the moving and the
stationary surfaces, i.e.,

y = 0 u = 0 y = h u = U (2 − 10a, b)

For simple Couette flow the pressure gradient is assumed zero. Thus, the gov-
erning equation becomes

d2u

dy2
= 0

Integrating twice and evaluating the constants of integration from the bound-
ary conditions yields the linear velocity distribution shown in Figure 2–2.

u

U
=

y

h
or ū = ȳ (2 − 11)

Turning now to nonsimple Couette flow, i.e., when the pressure gradient is
nonzero, the governing differential equation is now Eq. (2–1) with the boundary
conditions given in Eqs. (2–10a, b). Integrating Eq. (2–1) twice again yields

u(y) =
1
2

1
µ

dP

dx
y2 + Ay + B (2 − 2)

where A and B are constants of integration. Again, the pressure gradient is
constant. Using the boundary conditions to evaluate A and B yields

B = 0

A =
1
h

(
U − 1

2
1
µ

dP

dx
h2

)

Substituting into Eq. (2–2), introducing the nondimensional variables

ū =
u

U
ȳ =

y

h
P̄ = − h2

2µU

dP

dx
(2 − 12a, b, c)

and rearranging yields
ū = ȳ [ 1 + P̄ (1 − ȳ) ] (2 − 13)

From Eq. (2–13) we see that the shape of the nondimensional velocity distribu-
tion is determined by the nondimensional pressure gradient, P̄ . Nondimensional
velocity profiles for several values of P̄ are shown in Figure 2–3.

The results shown in Figure 2–3 indicate that the slope of the velocity profile
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Figure 2–3. Nondimensional velocity profiles for nonsimple Couette flow.

Hence, the shearing stress at the stationary surface is zero for P̄ = −1 and
at the moving surface for P̄ = +1. Using Eqs. (2–13) and (2–14) we see that
for P̄ < −1, regions of backflow, i.e., u ≤ 0, exist near the stationary surface.
For P̄ > 1, the velocity in the flow exceeds the velocity of the moving plate.
Physically, a region of backflow exists when the force due to the momentum of
the fluid in the flow direction is overcome by the adverse pressure gradient† in the
flow direction. Similarly, velocities greater than that of the moving plate occur
when a favorable pressure gradient in the flow direction adds to the momentum
of the fluid in that direction.

One further analytical solution, the suddenly accelerated plane wall, is pre-
sented below in order to illustrate several solution techniques.

2–5 The Suddenly Accelerated Plane Wall

Consider the two-dimensional parallel flow of an incompressible fluid near a flat
plate which is suddenly accelerated from rest and moves in its own plane with

†An adverse pressure gradient means the pressure increases in the flow direction.
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a constant velocity U (see Figure 2–4). Recall that the Navier-Stokes equations
for two-dimensional incompressible, constant property flow are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= − 1

ρ
∂P

∂x
+ ν

(
∂ 2u

∂x2
+

∂ 2uuν

(

2
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which requires f(x) = constant. The mathematical model is then based upon a
uniform pressure field for all x, y and t equal to or greater than zero.

From the continuity equation we have

∂u

∂x
= − ∂v

∂y
= 0

and the governing differential equations reduce to

∂u

∂t
= ν

∂ 2u

∂y2
t > 0 (2 − 16)

The initial and boundary conditions are

u = 0 for all y t ≤ 0

u = U y = 0
u → 0 y → ∞

}
t > 0 (2 − 17a, b)

where for t > 0 the first boundary condition expresses the fact that there is
no slip at the surface. The second boundary condition is read: In the limit as
y approaches infinity the velocity approaches zero. It represents the physical
condition that the influence of the wall, i.e., the effect of viscosity, decreases
asymptotically to zero as the distance above the plate increases.

The governing differential equation, Eq. (2–16), has the same form as the equa-
tion describing the diffusion of heat by conduction in the space y > 0 when at
t = 0 the wall temperature is suddenly changed. The kinematic viscosity, ν ,
which appears in the governing equation is sometimes called the momentum dif-
fusivity. It plays the same role in the momentum equation that the thermal
diffusivity, α, does in the energy equation. Equation (2–16) is generally called
the diffusion equation. The diffusion equation is first encountered in a classical
course in differential equations. There, an analytical solution is obtained by the
classical separation of variables technique. Thus, it seems reasonable to look for a
solution in the same manner. In an attempt to separate the variables we assume

u = F (t)G(y) (2 − 18)

Substituting into the differential equation yields

F ′G = νFG′′

or F ′

F
= ν

G′′

G
= iγ2 (2 − 19)

where here the prime denotes differentiation with respect to the appropriate ar-
gument. Since each side of Eq. (2–19) is a function of only one variable, they can
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individually be satisfied only if they are each equal to a constant, in this case
iγ2.† Hence, we have

F ′

F
= iγ2 (2 − 20a)

G′′

G
=

iγ2

ν (2 − 20b)

The solution of Eq. (2–20a) is
F = C1e

iγ2t (2 − 21a)
and to Eq. (2–20b)

G = C2e

(
iγ2

ν

)1
2

y + C3e
−
(

iγ2

ν

)1
2

y (2 − 21b)

The initial and boundary conditions are given by Eq. (2–17). There are three
possible cases, i = 0, ±1. The case of i = 0 yields the trivial solution u = 0
everywhere and hence is discarded. For i = ±
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We now seek a similarity solution. In particular, we seek a transformation of
variables which reduces the governing partial differential equation to an ordinary
differential equation. Since a partial differential equation involves more than
one independent variable and an ordinary differential equation only one, it is
reasonable to assume an independent variable transformation which attempts to
combine the two independent variables. Thus, we assume

η = Bymtn (2 − 22)

where B, m, n are, as yet, undetermined constants and η is a transformed
independent variable. In addition, to nondimensionalize the equations we assume
a dependent variable transformation of the form

u = Af(η) (2 − 23)

where A is again an as yet undetermined constant. Using these transformations
yields

∂u

∂t
= A

∂η

∂t

∂f

∂η
= ABnymtn−1f ′ (2 − 24)

where here the prime denotes differentiation with respect to η. Further

∂u

∂y
= A

∂η

∂y
f ′ = ABmym−1tnf ′ (2 − 25a)

and ∂ 2u

∂y2
= ABm(m − 1)ym−2tnf ′ + AB2m2y2(m−1)t2nf ′′ (2 − 25b)

Substituting Eqs. (2–24) and (2–25) into the differential equation, (Eq. 2-16),
yields

ABnymtn−1f ′ = νABm(m − 1)ym−2tnf ′ + νAB2m2y2(m−1)t2nf ′′ (2 − 26)

Since A appears in each term it can be eliminated. Hence, its value is arbitrary
with respect to the differential equation.

We now seek to select values of m, n, A, B such that reduction to a nondimen-
sional ordinary differential equation is achieved. Inspection of Eq. (2–26) shows
that for m = 1 the first term on the right and the y dependence of the second
term are eliminated. Thus, we have

Bnyt(n−1)f ′ = νB2t2nf ′′ (2 − 27)

and η = Bytn (2 − 28)

Using Eq. (2–28) allows Eq. (2–27) to be rewritten as

nηt−1f ′ = νB2t2nf ′′ (2 − 29)
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If n = −1/2 the time dependence is eliminated. Finally, choosing B2 = 1/4 ν,
where the 4 is introduced for later convenience, yields a nondimensional ordinary
differential equation

f ′′+2ηf ′ = 0 (2 − 30)

where η =
1
2

y√
νt

(2 − 31)

u = Af(η) (2 − 32)

Now looking at the boundary conditions we have for t > 0, η = 0 when y = 0
and η → ∞ when y → ∞. Hence

η = 0 f(0) =
U

A
(2 − 33)

η → ∞ f(η) → 0 (2 − 34)

The first of these boundary conditions, Eq. (2–33), is inconvenient in its present
form. Thus, we take A = U and have

η = 0 f(0) = 1 (2 − 35)

Note that the arbitrariness of A as revealed by the differential equation is used
to achieve a simplified boundary condition.

A closed-form analytical solution to the boundary value problem given by
Eqs. (2–30), (2–34) and (2–35) is obtained by letting

φ =
df

dη
= f ′ (2 − 36)

Upon substitution into Eq. (2–30) we have

φ′ + 2ηφ = 0 (2 − 37)

The solution of this ordinary differential equation is (see [Murp60], Eq. 173,
p. 327)

φ = f ′ = C1e
−η2

(2 − 38)

Hence, after integrating

f = C1

∫ η

0

e−η2
dη + C2 (2 − 39)

The boundary condition at η = 0 yields C2 = 1. The boundary condition as
η → ∞ yields

C1 =
−1∫ ∞

0

e−η2
dη

(2 − 40)
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The solution is then

f(η) = 1 −

∫ η

0

e−η2
dη

∫ ∞

0

e−η2
dη

(2 − 41)

Evaluation of the integral from zero to infinity yields

f(η) = 1 − 2√
π

∫ η

0

e−η2
dη (2 − 42)

The second term on the right is the error function and 1 − erf(η) is the comple-
mentary error function. Thus,

f(η) =
u

U
= erfc(η) (2 − 43)

Here, a similarity analysis has been used to obtain a closed-form analytical solu-
tion to a problem which previously did not yield to any solution using separation
of variables.

Figure 2–5a gives y vs u/U for various values of time t. Note that the extent
of the viscous zone increases with increasing time. Due to the action of fluid
viscosity, after an infinite time the entire flow field above the plate is moving with
the velocity of the plate. Figure 2–5b shows η vs u/U . This figure illustrates
that the similarity variables collapse the solutions given in Figure 2–5a into a
single solution.

An exact solution to this boundary value problem can be obtained by nu-
merical integration and compared with the analytical solution to illustrate the

u
U

y

1

u
U

η

1

t = 100

10

3

1

(a) (b)

Figure 2–5. Velocity profiles for the suddenly accelerated plate.
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accuracy of numerical integration techniques. Having demonstrated the utility
of similarity analysis, we proceed to apply this technique to problems which
generally do not yield closed-form analytical solutions (see Hansen [Hans64]).

2–7 Two-dimensional Stagnation Point Flow

Consider the two-dimensional steady flow of an incompressible viscous nonheat-
conducting fluid impinging on a plate perpendicular to the flow direction (see
Figure 2–6). Assume that the flow at a large distance above the plate is given
by the corresponding inviscid (potential) flow and that no-slip conditions prevail
at the plate surface.

First, consider the inviscid flow solution. We take the plate to be at y = 0 and
the stagnation point at x = 0, y = 0 (see Figure 2–6). The flow is impinging on
the plate from the positive y direction. Under these circumstances the potential
flow solution yields the following expressions for the stream and velocity potential
functions (see [Rose63], p. 155)

ψi = K xy (2 − 44)

φi =
K

2
(x2 − y2) (2 − 45)

where the i subscript indicates the inviscid flow solution. Differentiation yields
Ui and Vi, the x and y components of the inviscid flow velocity, i.e.,

Ui =
∂ψi

∂y
= K x (2 − 46)

Vi = − ∂ψi

∂x
= −K y (2 − 47)

0,0

y

x

Figure 2–6. Two-dimensional stagnation point flow.
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In a potential flow the incompressible Bernoulli equation is applicable and is
used to obtain a relationship between the pressure at any point in the flow and
the stagnation point. Thus, we have

P0 − Pi =
1
2

ρ
(
U2

i + V 2
i

)
=

1
2

K2(x2 + y2) (2 − 48)

where the zero subscript indicates the stagnation point.
Returning to the viscous flow case, we have that the governing equations for

the dynamics of the two-dimensional steady flow of a viscous incompressible
constant property fluid are

continuity
∂u

∂x
+

∂v

∂y
= 0 (1 − 49)

momentum

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ
∂P

∂x
+ ν

(
∂ 2u

∂x2
+

∂ 2u

∂y2

)
(1 − 50a)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ
∂P

∂y
+ ν

(
∂ 2v

∂x2
+

∂ 2v

∂y2

)
(1 − 50b)

The continuity equation is integrated by introducing a stream function such that

u =
∂ψ

∂y
v = − ∂ψ

∂x
(2 − 49)

Hence, the momentum equations become

ψyψxy − ψxψyy = − 1
ρ

∂P

∂x
+ ν(ψxxy + ψyyy) (2 − 50)

and ψyψxx − ψxψxy =
1
ρ

∂P

∂y
+ ν(ψxxx + ψxyy) (2 − 51)

The appropriate boundary conditions at the plate surface, i.e., at y = 0, are
u = v = 0 or ψy = ψx = 0. At the stagnation point, i.e., at x = 0, y = 0, we
have P = P0. Recall that at a large distance above the plate it was assumed
that the inviscid flow is recovered. Hence, as y → ∞, u → Ui, v → Vi. Thus,
u → Kx and v → −Ky, and the pressure field approaches the inviscid pressure
field given by Eq. (2–48).

Notwithstanding our experience with the suddenly accelerated flat plate, we
seek a solution by separation of variables. Thus, we assume

ψ(x, y) = F (x)G(y) = KxG(y) (2 − 52)

where K is a constant. Assuming a solution of this form is essentially equivalent
to predetermining the solution as a function of x. This form of the solution is
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justified on the basis of the required behavior at infinity, i.e., as y → ∞, u =
ψy = KxG′(y) → Kx. Here the prime denotes differentiation with respect to the
appropriate argument. Our result also implies that as y → ∞, G′(y) → 1. Since
Eqs. (2–50) and (2–51) represent two equations in the two dependent variables ψ

and P , we must also make an assumption about the form of the viscous pressure
field. Assuming that the functional form of the viscous pressure field is closely
approximated by that for the inviscid pressure field, we take†

P0 − P =
1
2

ρK2
(
x2 + F (y)

)
(2 − 53)

Substitution of Eqs. (2–52) and (2–53) into the governing differential equations
Eqs. (2–50) and (2–51) yields

K2xG′G′ − K2xGG′′ = K2x + νKxG′′′

and −K2GG′ = −K2

2
F ′ + νKG′′

where here the prime denotes differentiation with respect to the argument y. Di-
viding the first of these equations through by K2x and the second by −K2 yields

G′G′ − GG′′ = 1 +
ν

K
G′′′ (2 − 54)

and GG′ =
1
2

F ′ − ν

K
G′′ (2 − 55)

Immediately we note that the governing partial differential equations have been
reduced to ordinary differential equations. Since no equation which is a function
of x results, we know that we have correctly chosen the functional form with
respect to x in Eqs. (2–52) and (2–53).

From Eq. (2–52) the boundary conditions at y = 0 are

G(0) = G′(0) = 0 (2 − 56)

†The rationale for this assumption is illustrated by assuming

P0 − P =
1

2
ρ(u2 + v2)

Substituting for u and v as obtained from Eq. (2–52), we have

P0 − P =
1

2
ρK2[(xG′)2 + G2]

Realizing that as y → ∞ G′ → 1, we finally assume for simplicity that the pressure
field has the form given by Eq. (2–53). However, note that F (y) is taken as an arbitrary
function of y for greater generality.
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At x = 0, y = 0, i.e., at the stagnation point, from Eq. (2–53) we have

P0 − P =
1
2

ρK
(
F (0)

)
= 0

Since at x = 0, y = 0, P = P0

F (0) = 0 (2 − 57)

Recalling that at a large distance above the plate it is assumed that the inviscid
flow solution is recovered, we write

u = ψy = KxG′ → U → Kx

Hence as y → ∞
G′(y) → 1 (2 − 58)

Although an analytical solution of the two-point asymptotic boundary value
problem given by Eqs. (2–54) to (2–58) does not presently exist, exact numerical
solutions can be obtained. However, to obtain any insight into the results, it is
necessary to parameterize the solutions with respect to ν/K. This is inconve-
nient and also expensive in terms of computation time. Hence, before proceeding
further we look for affine stretching transformations for the dependent and inde-
pendent variables which remove the factor ν/K, i.e., we nondimensionalize the
equations. Thus, we let

G(y) = αf(η) (2 − 59a)

F (y) = γg(η) (2 − 59b)

η = βy (2 − 59c)

where α, γ, and β are nonzero constants.
Substituting into Eqs. (2–54) and (2–55) yields

f ′2 − ff ′′ =
1

(αβ)2
+

ν

K

β

α
f ′′′ (2 − 60)

ff ′ =
1
2

γ

α2
g′ − ν

K

β

α
f ′′ (2 − 61)

Before choosing α, γ and β we look at the boundary conditions. The reason
is that a particular choice of α, γ and β which eliminates ν/K from the differ-
ential equation may result in boundary conditions involving ν/K. Under these
circumstances, the solution requires parameterization with respect to the bound-
ary conditions. Transformation of Eqs. (2–56) to (2–58) at η = 0 yields

f(0) = f ′(0) = g(0) = 0 (2 − 62)
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and as η → ∞
f ′(η) =

1
αβ

(2 − 63)

From an examination of Eqs. (2–60), (2–61) and (2–63) we see that an appropri-
ate choice is αβ = 1, β/α = K/ν and γ = 2α2. After solving for α, β, γ we have

β =
(

K

ν

)1/2

α =
(

ν

K

)1/2

γ = 2
ν

K
(2 − 64)

and the governing two-point asymptotic boundary value problem is

f ′′′+f ′′ + (1 − f ′2) = 0 (2 − 65)

g′ = f ′′ + ff ′ (2 − 66)

with boundary conditions

η = 0 f(0) = f ′(0) = g(0) = 0 (2 − 67)

η → ∞ f ′(η) → 1 (2 − 68)

Here, we see that not only are the momentum equations uncoupled from the en-
ergy equation but in addition the x and y momentum equations, Eqs. (2–65) and
(2–66), respectively, are also uncoupled. Thus, we can solve the x momentum
equation, Eq. (2–65), independently of the y momentum equation, Eq. (2–66),
and subsequently use the solution of Eq. (2–65) in obtaining that of Eq. (2–66).
That is, we use the values of f ′(η) and f ′′(η) obtained from a solution of
Eq. (2–65) in Eq. (2–66) to solve for g(η).

Equation (2–66) can be directly integrated to yield

g =
f2

2
+ f ′ + constant

From the boundary conditions given in Eq. (2–56) we see that the constant of
integration is zero, hence

g =
f2

2
+ f ′ (2 − 69)

No known closed-form analytical solution of the remaining two-point asymptotic
boundary value problem is available. Thus, we look for an exact numerical solu-
tion. The procedure is to seek an exact solution of Eq. (2-65) and to subsequently
use that solution to obtain g(η).

Equation (2–65) is a third-order nonlinear† ordinary differential equation. Nu-
merical integration of this equation requires a knowledge of f(0), f ′(0) and f ′′(0)

†A differential equation is nonlinear if powers and/or products of the dependent variable
and/or its derivatives occur; e.g., y(dy/dx)+y = 0 is nonlinear, while x(dy/dx)+y = 0
is linear.
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to start the integration. However, from the given boundary conditions only f(0)
and f ′(0) are known. The third required boundary condition is specified at infin-
ity. The procedure is to estimate the unknown value of f ′′(0) and then perform
the numerical integration out to some large value of η which we call ηmax. ηmax

is taken to be equivalent to infinity. When the integration has proceeded to ηmax

the value of f ′(ηmax) is compared with the required asymptotic value of one.
If f ′(ηmax) is within some specified small value of one then the outer boundary
condition is said to be satisfied and we have a solution of the governing two-point
asymptotic boundary value problem. If not, we estimate a new value of f ′′(0)
and repeat the procedure. Since ηmax �= ∞, f ′(ηmax) cannot equal one precisely.
Thus, we consider the outer boundary condition to be satisfied if

f ′(ηmax) = 1 ± ε1 (2 − 70)

where ε1 is some small quantity, say 5 × 10−7. This is the so-called ‘shoot-
ing’ method.

2–8 Iteration Scheme

In general the first estimate for f ′′(0) does not yield a solution. Arbitrary guess-
ing of subsequent estimates of f ′′(0), of course, proves to be quite inefficient.
Hence, a logical method of determining the new estimates for f ′′(0) must be
used. The Newton-Raphson method (see Appendix B) is frequently used for
estimating the unknown gradients needed to obtain numerical solutions to linear
and nonlinear differential equations. Although the Newton-Raphson iteration
scheme assures convergence to the required outer boundary condition at ηmax,
it does not insure asymptotic convergence to the specified outer boundary con-
dition required for this two-point asymptotic boundary value problem. Before
continuing the discussion, recall that asymptotic convergence implies that as
f ′(η) → 1 its first derivative approaches zero, i.e., f ′′(η) → 0 as η → ηmax.
Considering the Newton-Raphson iteration scheme in this context reveals that
it does not insure asymptotic convergence; in fact, the Newton-Raphson itera-
tion scheme might be satisfied by f ′(ηmax) = 1 + ε and (say) f ′′(ηmax) = 0.5.
Hence, at ηmax + ∆η, f ′(η) would not satisfy the outer boundary condition. In
addition, if the initial estimate of f ′′(0) is very far from the correct value the
solutions tend to diverge. Under these circumstances the derivatives required in
the Newton-Raphson method cannot be calculated in any meaningful manner.

In order to eliminate the problems associated with the Newton-Raphson iter-
ation scheme, the Nachtsheim-Swigert [Nach65] iteration scheme is used. This
technique is fully discussed in Appendix B. In summary the Nachtsheim-Swigert
iteration scheme is so structured that asymptotic convergence to the correct
outer boundary conditions is assured. This is accomplished by imposing the
additional condition that

f ′′(ηmax) = ε2 (2 − 71)
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where ε2 is some small quantity. The new estimates of f ′′(0) are obtained such
that the sum of the squares of the errors, i.e., ε1

2 + ε2
2, in satisfying the asymp-

totic boundary condition is a minimum. Thus, convergence is achieved in a least
squares sense.

A numerical algorithm to solve boundary value problems is discussed in detail
in Appendix D.

2–9 Numerical Solution

The results of a typical run of the stag2d program described in Section D–12
are shown below.

f′′(0) = 1.25

η f′′ f′ f

0 1.25 0 0
6. 0.222783 1.57637 6.42524

f′′(0) = 1.251

0 1.251 0 0
6. 0.237166 1.61137 6.48878

f′′(0) = 1.23368

0 1.23368 0 0
6. 1.24093e−2 1.03421 5.41737

f′′(0) = 1.23272

0 1.23272 0 0
6. 1.45136e−3 1.00402 5.35978

f′′(0) = 1.2326

0 1.2326 0 0
6. 1.75541e−4 1.00049 5.35303

f′′(0) = 1.23259

0 1.23259 0 0
6. 2.1323e−5 1.00006 5.35221

f′′(0) = 1.23259

0 1.23259 0 0
6. 2.60013e−6 1.00001 5.35211

f′′(0) = 1.23259

0 1.23259 0 0
6. 3.25885e−7 1. 5.3521

Convergence achieved



42 Laminar Flow Analysis

Table 2–1. Solutions for two-dimensional stagnation point flow.

η f′′ f′ f g

0 1.232588 0 0 0
0.2 1.03445 0.226612 2.33223e−2 0.226884
0.4 0.846325 0.414456 8.80566e−2 0.418333
0.6 0.675171 0.566281 0.186701 0.583709
0.8 0.525131 0.685937 0.312423 0.734742
1. 0.398013 0.777865 0.459227 0.88331
1.2 0.293776 0.846671 0.622028 1.04013
1.4 0.211003 0.896809 0.796652 1.21414
1.6 0.147351 0.932348 0.979779 1.41233
1.8 9.99638e−2 0.956834 1.16886 1.63995
2. 6.58254e−2 0.973217 1.36197 1.9007
2.2 4.20396e−2 0.983853 1.55776 2.19716
2.4 2.60203e−2 0.990549 1.75525 2.53101
2.6 1.55973e−2 0.994634 1.95381 2.90331
2.8 9.04887e−3 0.997046 2.153 3.31474
3. 5.07797e−3 0.998424 2.35256 3.76569
3.2 2.7549e−3 0.999186 2.55233 4.25637
3.4 1.44421e−3 0.999593 2.75221 4.78692
3.6 7.31269e−4 0.999803 2.95215 5.3574
3.8 3.57497e−4 0.999908 3.15212 5.96784
4. 1.6868e−4 0.999958 3.35211 6.61828
4.2 7.67926e−5 0.999982 3.5521 7.3087
4.4 3.37239e−5 0.999992 3.7521 8.03912
4.6 1.42847e−5 0.999997 3.9521 8.80954
4.8 5.83719e−6 0.999999 4.1521 9.61997
5. 2.30344e−6 1. 4.3521 10.4704
5.2 8.80753e−7 1. 4.5521 11.3608
5.4 3.29701e−7 1. 4.7521 12.2912
5.6 1.24507e−7 1. 4.9521 13.2616
5.8 5.12017e−8 1. 5.1521 14.2721
6. 2.623e−8 1. 5.3521 15.3225

Here the initial guess for the unknown initial condition f ′′(0) for the x momentum
equation (Eq. 2–65) is taken as 1.25.† After perturbing the initial guess for f ′′(0)
in order to calculate the Nachtsheim-Swigert iteration derivatives at the edge of
the boundary layer, convergence within the required error values of f ′′(ηmax) =
±1 × 10−6 and f ′(ηmax) − 1 = ±1 × 10−6 occurs after six iterations.

Solution of the y momentum equation is obtained by using these results in
Eq. (2–69). The results are tabulated in Table 2–1 and shown in Figure 2–7.

†Since no prior knowledge of the solution of equations of this type was available, the
value of f ′′(0) = 1.25 was arrived at by initially limiting the value of ηmax as discussed
in Appendix B.
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Figure 2–8. Effect of f ′′(0) on f ′(η).

is somewhat improved in this case. These modifications are left as an exercise
for the reader (see Problem 2–5).

2–10 Axisymmetric Stagnation Point Flow

The previously obtained solution for two-dimensional stagnation point flow can
be extended to the case of an axisymmetric stream impinging on a plane wall.
The solution obtained is representative of that near the forward stagnation point
of an axisymmetric blunt body. Figure 2–9 illustrates the problem under dis-
cussion. Here x and y are the radial and axial directions, respectively, with
u and v the velocity components in the x and y directions, respectively. The
plane is assumed to be perpendicular to the flow direction, with the stagnation
point as the center of the coordinate system. The momentum equations for
steady axisymmetric incompressible flow with constant properties are obtained
by transforming Eqs. (1–49) and (1–50) into cylindrical polar coordinates. They
are then (see Goldstein [Gold38], p. 143)

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂P

∂x
+ ν

(
∂ 2u

∂x2
+

1
x

∂u

∂x
− u

x2
+

∂ 2u

∂y2

)
(2 − 72)

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ

∂P

∂y
+ ν

(
∂ 2v

∂x2
+

1
x

∂v

∂x
+

∂ 2v

∂y2

)
(2 − 73)

The axisymmetric continuity equation is

∂

∂x
(xu) +

∂

∂y
(xv) = 0 (2 − 74)
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Figure 2–9. Axisymmetric stagnation point flow.

The boundary conditions are again taken to be no-slip at the plate surface
and no-mass-transfer through the plate surface. Further, it is required that the
inviscid solution be recovered at a large distance from the body. For axisym-
metric inviscid stagnation point flow, the velocity components are given by (see
Moore [Moor64], p. 79)

Ui = Kx (2 − 75)

Vi = −2Ky (2 − 76)

and the pressure distribution by

P0 − Pi =
1
2

ρK2
(
x2 + 4y2

)
(2 − 77)

where the zero subscript indicates the stagnation point at x = y = 0.†

The boundary conditions at the surface become u = v = 0 at y = 0. Further,
at the stagnation point, y = 0, x = 0, P = P0. At a large distance from the
plate, i.e., as y → ∞, u → Ui → Kx, v → Vi → −2Ky.

The continuity equation is automatically satisfied by introducing a stream
function of the form

u =
1
x

∂ψ

∂y
v = − 1

x

∂ψ

∂x
(2 − 78)

†Alternatively, we may take Ui = Kx/2, Vi = −Kx, in which case the pressure distri-
bution is

P0 − Pi =
1

2
ρK2

[(
x

2

)2

+ y2
]
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Introducing the stream function into the momentum equations yields

1
x2

ψyψxy − 1
x2

ψxψyy − 1
x3

ψ2
y =

− 1
ρ

∂P

∂x
+ ν

(
1
x

ψyyy +
1
x

ψxxy − 1
x2

ψxy

)
(2 − 79)

and 1
x2

ψxψxy − 1
x2

ψxxψy +
1
x3

ψxψy =

− 1
ρ

∂P

∂y
− ν

(
1
x

ψxxx +
1
x

ψxyy +
1
x3

ψx − 1
x2

ψxx

)
(2 − 80)

By analogy with two-dimensional stagnation point flow, we seek solutions of
the viscous momentum equations by separation of variables. To this end we
assume that

ψ(x, y) = KxaG(y) (2 − 81)

where a is an as yet undetermined constant. Choosing this form for ψ(x, y)
presupposes that the x dependence is a power law. We again assume that

P0 − P =
1
2

ρK2
[
x2 + F (y)

]
(2 − 82)

Substituting into the momentum equations, the x momentum equation is

(a − 1)K2x2a−3G′2 − aK2x2a−3GG′′ =

K2x + ν
[
Kxa−1G′′′ + a(a − 2)Kxa−3G′] (2 − 83)

and the y momentum equation becomes

2aK2x2a−4GG′ =
K2F ′

2
− ν

[
a(a − 2)2Kxa−4G + aKxa−2G′′] (2 − 84)

where here the prime denotes differentiation with respect to the argument y.
Inspection of Eqs. (2–83) and (2–84) shows that if a = 2 these partial differential
equations reduce to ordinary differential equations. Thus, after dividing by K2

and 4K2 in the x and y momentum equations, respectively, we have

ν

K
G′′′ + 2GG′′ +

(
1 − G′2) = 0 (2 − 85)

and GG′ = −F ′

8
− ν

2K
G′′ (2 − 86)

Here, note that Eqs. (2–85) and (2–86) are very similar in form to Eqs. (2–54)
and (2–55). Again, the equations are nondimensionalized by seeking affine
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stretching transformations of the form

G(y) = αf(η) (2 − 87a)

F (y) = γg(η) (2 − 87b)

η = βy (2 − 87c)

where α, γ, β are nonzero constants. Substituting into Eqs. (2–85) and (2–86)
yields

f ′′′ +
2K

ν

α

β
ff ′′ +

K

ν

1
αβ3

[
1 − (αβ)2f ′2 ]

= 0 (2 − 88)

and ff ′ =
γ

8
1
α2

g′ − ν

2K

β

α
f ′′ (2 − 89)

Before choosing particular values for α, γ and β the boundary conditions must
be investigated. The transformed surface boundary conditions are

η = 0 f(0) = f ′(0) = g(0) = 0 (2 − 90a)

The transformed boundary condition at infinity is

η → ∞ f(η) → 1
αβ

(2 − 90b)

Hence, in order to obtain a simplified boundary condition at infinity we take
αβ = 1. Finally, we take

2K

ν

α

β
= 1

and γ = 8α2

Hence β =
(

2K

ν

)1/2

α =
(

ν

2K

)1/2

γ =
4ν

K
(2 − 91)

The governing two-point asymptotic boundary value problem is then given as

f ′′′ + ff ′′ +
1
2

(1 − f ′2) = 0 (2 − 92)

g′ =ff ′ + f ′′ (2 − 93)

with boundary conditions

η = 0 f(0) = f ′(0) = g(0) = 0 (2 − 94)

η → ∞ f(η) → 1 (2 − 95)
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As was the case for two-dimensional stagnation point flow, the transformed y
momentum equation is immediately integrable. Hence

g(η) =
f2

2
+ f ′ (2 − 96)

Comparing Eqs. (2–92) and (2–65), we see that they differ only by the factor
of one-half multiplying the last term. The solution of Eq. (2–92) is obtained
by the modifications to the eqmot2d routine used with stag2d. Specifically,
eqmot2d becomes

equations of motion — two-dimensional axisymmetric stagnation point flow

subroutine eqmot(eta, x(), param(), f())

f(1) = −x(3)∗x(1) −0.5∗(1 − x(2)∗x(2))
f(2) = x(1)
f(3) = x(2)

return

A typical run using the above modified eqmot2d routine is

f′′(0) = 1.23259

η f′′ f′ f

0 1.232588 0 0
6. 0.423879 3.29404 11.6197

f′′(0) = 1.233588

0 1.233588 0 0
6. 0.425169 3.30122 11.6401

f′′(0) = 0.912905

0 0.912905 0 0
6. −0.022935 0.881218 4.87142

f′′(0) = 0.929481

0 0.929481 0 0
6. 2.7727e−3 1.01441 5.23484

f′′(0) = 0.92747

0 0.92747 0 0
6. −3.22936e−4 0.998322 5.19087

f′′(0) = 0.927705

0 0.927705 0 0
6. 3.79112e−5 1.0002 5.19599

f′′(0) = 1.23259



Axisymmetric Stagnation Point Flow 49

f′′(0) = 0.927677

0 0.927677 0 0
6. −4.31852e−6 0.999977 5.19539

f′′(0) = 0.92768

0 0.92768 0 0
6. 6.21323e−7 1. 5.19546

f′′(0) = 0.92768

0 0.92768 0 0
6. 4.34516e−8 1. 5.19545

Convergence achieved

As shown for two-dimensional stagnation point flow, arbitrary estimation of
the value of f ′′(0) can lead to results for the Nachtsheim-Swigert iteration deriva-
tives, which do not yield convergence to the required outer boundary condition
f ′(ηmax) → 1. Hence, it is desirable to have some knowledge of an approximate
range of values for f ′′(0). If either an analytical or exact solution of a boundary
value problem similar to that under investigation is known, then it is reasonable
to use the value of f ′′(0) obtained for the known solution as the first estimate for
the problem under investigation. Considering the similarity of Eqs. (2–92) and
(2–65), the first estimate of f ′′(0) is taken to be that for two-dimensional stagna-
tion point flow, i.e., 1.232588. Convergence to within f ′′(ηmax) = ±1×10−6 and
f ′(ηmax)− 1 = ±1× 10−6 in seven iterations yields a value of f ′′(0) = 0.927680.
Note that the correction value for the last iteration is less than 5 × 10−6. The
complete solution including the y momentum equation (see Eq. 2–96) is shown in
Table 2–2. The value of f ′′(0) = 0.927680 agrees with that originally calculated
by Homann [Homa36].

The nondimensional velocity and pressure function results for axisymmetric
stagnation point flow are shown graphically in Figure 2–10. Also shown are the
results for two-dimensional stagnation point flow.

From an analysis of the previous assumptions and transformations we see that
for both two-dimensional and axisymmetric flow the local velocity components
and the stream function are related to their respective inviscid values by

u

Ui
= f ′(η)

v

Vi
= − f ′(η)

η

ψ

ψi
=

f(η)
η

(2 − 97a, b, c)

Further, the pressure field for two-dimensional viscous stagnation point flow is

P0 − P =
ρ

2
K2

(
x2 +

2g(η)
η2

y2

)
(2 − 98)

and that for axisymmetric viscous stagnation point flow

P0 − P =
ρK2

2

(
x2 + 4

2g(η)
η2

y2

)
(2 − 99)
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Table 2–2. Solutions for axisymmetric stagnation point flow.

η f′′ f′ f g

0 0.92768 0 0 0
0.2 0.82771 0.175537 0.017887 0.175697
0.4 0.728152 0.33111 6.88836e−2 0.333483
0.6 0.630002 0.466891 0.149011 0.477993
0.8 0.53477 0.583305 0.254348 0.615651
1. 0.444284 0.681115 0.381092 0.753731
1.2 0.360449 0.761462 0.525629 0.899605
1.4 0.284977 0.825853 0.684612 1.0602
1.6 0.219151 0.876098 0.855027 1.24163
1.8 0.163652 0.914204 1.03424 1.44903
2. 0.1185 0.94225 1.22004 1.6865
2.2 8.30998e−2 0.962255 1.41061 1.95716
2.4 0.056379 0.976069 1.60453 2.26332
2.6 3.69739e−2 0.985294 1.80073 2.60661
2.8 2.34217e−2 0.991248 1.99843 2.9881
3. 1.43227e−2 0.994959 2.19708 3.40854
3.2 8.4508e−3 0.997192 2.39631 3.86835
3.4 4.80892e−3 0.998488 2.59589 4.36782
3.6 2.63824e−3 0.999213 2.79567 4.9071
3.8 1.39496e−3 0.999605 2.99556 5.48628
4. 7.10674e−4 0.999808 3.1955 6.10542
4.2 3.48767e−4 0.99991 3.39547 6.76453
4.4 1.6484e−4 0.999959 3.59546 7.46363
4.6 7.50188e−5 0.999982 3.79546 8.20272
4.8 3.2869e−5 0.999993 3.99545 8.98181
5. 1.38626e−5 0.999997 4.19545 9.80091
5.2 5.62723e−6 0.999999 4.39545 10.66
5.4 2.19832e−6 1. 4.59545 11.5591
5.6 8.26459e−7 1. 4.79545 12.4982
5.8 2.99049e−7 1. 4.99545 13.4773
6. 1.04212e−7 1. 5.19545 14.4964

Referring to Eqs. (2–48) and (2–77) shows that the viscous pressure fields are
given by similar modifications of the inviscid pressure fields. Looking at the
tabulated results, we see that close to the plate surface 2g(η)/η2 > 1 and hence
the local pressure P is larger than in the inviscid case, whereas far from the
plate, i.e., for larger values of η, 2g(η)/η2 < 1. Hence, the local pressure P is
less than in the inviscid case. Further, the effect is less for axisymmetric than
for two-dimensional viscous stagnation point flow.

Returning to the stream function and velocity components, we see from the
numerical results that the viscous stream function and the velocity components
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Figure 2–10. Nondimensional results for axisymmetric stagnation point flow.

are always less than the corresponding inviscid results. Further, the effect is
greater for axisymmetric than for two-dimensional stagnation point flow.

Finally, we investigate the shearing stress at the wall. From the results given
in Chapter 1, we see that the shearing stress at the wall for both axisymmetric
and two-dimensional stagnation point flow is given by

τ = µ
∂u

∂y

∣∣∣
y=0

(2 − 100)

In transformed coordinates, the shearing stress at the wall for both two-dimen-
sional and axisymmetric stagnation point flow is

τ = µKxf ′′(0) (2 − 101)

Hence, the shearing stress at the wall is greater for two-dimensional stagnation
point flow than for axisymmetric stagnation point flow.

The technique developed in this chapter for solving an asymptotic two-point
boundary value problem is useful in succeeding chapters, where solutions for the
velocity profiles in laminar boundary layer flows are obtained.


