
Altitude Effects
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David F. Rogers

In our previous discussion of the effects of lowering the gear and flaps we found that the rate-of-
climb and velocity for maximum rate-of-climb were both significantly reduced. Further we found
that the range of velocities that gave positive rates-of-climb was also reduced. Now we want to
take a look at the effects of altitude on both the power required to maintain level flight and on the
thrust power available. We need this information so that next time we can look at the effect of
altitude on the rate-of-climb.

Recalling the equation for the power required to maintain level flight (by now you should be
very familiar with this equation)
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where σ (sigma) is the ratio of the density at altitude to that at sea level, σ = ρ/ρSL, on a standard
day.

Since we are concerned only with density effects, we can simplfy this equation to
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where Constant and Konstant are constants.
Here we see that since the density at altitude is less than the density at sea level that the

density ratio σ is less than one for any altitude above sea level. This means that the parasite power
required decreases as the altitude increases but the effective induced power required increases as
the altitude increases. The right side of the power required curve depends mainly on the parasite
power required and the left side on the effective induced power required (remember ground school).
You can see this in Figure 1 where power required curves for sea level, 5, 10, 15 and 20,000 feet
are given. The appropriate altitudes for the power required curves are shown on the left side of the
figure.

Now let’s look at the effect of altitude on the minimum power required for steady level flight.
Recall that the full equation is
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but again simplifies to the result shown on the right when we consider only density effects.
Again, because the density ratio, σ, occurs in the denominator (the bottom) of the equation

and is less than one, the minimum power required for steady level flight increases with altitude. A
look at Figure 1 confirms this. For example, at sea level the minimum power required is approxi-
mately 81 horsepower while at 15,000 feet it is approximately 107 horsepower.

Finally let’s look at the effect of altitude on the velocity (TAS) for minimun power required
for steady level flight. Recall the full equation
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Figure 1. Power required and available vs velocity.

which, because we are only considering density effects, simplifies to the result on the right.
Again, because the density ratio, σ, occurs in the denominator and is less than one, the velocity

for minimum power required for steady level flight also increases with altitude as shown in Figure 1.
For example, at sea level the velocity (TAS) for minimum power required is approximately 95 mph
while at 15,000 feet it is approximately 126 mph.

Also shown on Figure 1 are maximum thrust power available curves for the same altitudes,
i.e. at full throttle and 2700 rpm for a model 33A. From experience we all know that for a normally
aspirated piston engine, as in most Bonanzas, the power available decreases with increasing altitude.
(However, this is not true for turbine powered aircraft.) But, how do we determine this? One way
is to assume that the engine power available at a specific altitude depends on the pressure at that
altitude. We can write this as

Paalt
= δPaSL

where δ is the ratio of pressure at a specific altitude to that at sea level. A small table giving the
density and pressure ratios for various altitudes is appears below.

To find the maximum power available at a particular altitude simply multiple the maximum
power at sea level, e.g., 285 for a model 33A, by the value for δ given in the table. For example, at
an altitude of 10,000 feet δ = 0.6877 and the maximum power available is 285× 0.6877 = 200 hp.

Looking at Figure 1 notice that for each altitude, except sea level and 20,000 feet, the power
available and power required curves intersect or cross in two places. The power required curve and
the power available curve for the same altitude are indicated by the same shape filled and open
symbols respectively. Since in steady level flight the power required must equal the power available,
the intersection of the curves gives the velocities at which the airplane will fly at that power setting
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Density Pressure
Altitude ratio ratio

feet σ δ

sea level 1.0000 1.0000
4000 0.8881 0.8637
5000 0.8617 0.8320
6000 0.8357 0.8014
7000 0.8106 0.7716
8000 0.7860 0.7428
9000 0.7620 0.7148

10000 0.7385 0.6877
12000 0.6360 0.6823
15000 0.6292 0.5643
20000 0.5328 0.4595

and that altitude. For any other velocity the airplane will either descend or climb. We all know
this from experience. For example, if we are stabilized in cruise at a particular velocity, and without
changing the power setting, decrease the velocity by pulling back on the yoke or increasing the nose
up trim, the airplane starts to climb. It will continue to climb until the power available equals the
power required at some new higher altitude but at a lower velocity (TAS). Go out and try it. I’d
suggest using the trim and not changing it much. It takes a while to restabilize so be patient. Also
you don’t need to use maximum power, it works just as well at partial powers, try say 65% at 8,500
feet.

The right hand intersection of the curves gives the maximum velocity in level flight at that
altitude. First, notice that for a normally aspirated piston engine the maximum velocity in level
flight occurs at sea level. Figure 1 gives a maximum velocity of approximately 212 mph which is
close to the 208 mph given by Larry Ball in his book Those Incomparable Bonanzas. At 15,000 feet
the maximum velocity (TAS) decreases to approximately 183 mph.

What about at 20,000 feet? The curves do not intersect! This means that the airplane does
not have enough power available to maintain steady level flight at 20,000 feet. The Beech POH
(old version) shows an absolute ceiling, defined as the altitude at which the rate-of-climb is zero,
of approximately 19,800 feet which, along with our result for the maximum velocity at sea level,
increases our confidence in the results.

The lefthand intersection gives the minimum velocity (TAS) at which the aircraft can maintain
steady level flight. Notice that at high altitudes the minimum velocity for steady level flight is
greater than the power on stall velocity. For example, at 15,000 feet the minimum velocity is
approximately 92 mph which is greater than the power on stall velocity (TAS) of 72 mph at 15,000
feet.

From looking at Figure 1 and the above discussion you can see that as the altitude increases the
velocity envelope — minimum to maximum velocity in steady level flight — narrows. This makes
speed control particularly important at high altitudes. At the absolute altitude the aircraft can
maintain steady level flight at only one velocity. For a constant propeller efficiency, that velocity
is the velocity for minimum power required. Because, in practice, propeller efficiency varies with
velocity, the actual velocity is a bit higher than the velocity for minimum power required. The
velocity for minimum power required is not given in the POH. However, as a first approximation
you can use the velocity for an obstacle clearance take-off.

Any time the power required to maintain steady level flight exceeds the power available the
aircraft must descend. At high velocities, i.e., to the right of the point where the curves intersect,
the velocity in the descent exceeds the maximum steady level flight velocity for that altitude. At
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low velocities, i.e., to the left of the point where the curves intersect, the velocity in the descent
is less than the minimum steady level flight velocity. The rate-of-descent at these velocities is
calculated by

Rate-of-descent =
power available− power required

weight

which comes out negative since the thrust power available is less than the power required.
One last detail needs explaining. Notice that the power required and power available curves

do not intersect at low velocities. Fundamentally, that is because the aircraft stalls first! However,
it also means that you can fly the aircraft in steady level flight just above the stall velocity and
even have a small positive rate-of-climb! We have all experienced this when practicing slow flight.

Next time we’ll look at the effects of altitude on the absolute ceiling with gear and flaps down.
This affects our ability to go around at high altitude airports.
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